
Abstract. The computation of the two-electron four-
center integrals over gaussian basis functions is a
signi®cant component of the overall work of many ab
initio methods used today. Improvements in the com-
putational e�ciency of the base algorithms have pro-
vided signi®cant impact. Somewhat overlooked are
methods that provide approximations to these integrals
and their implementation in application software. A
partial review of approximate integral techniques fo-
cused on the resolution of the identity (RI) four-center,
two-electron integral approximation is given. The past
and current uses of the RI algorithms are presented
along with possibilities for further exploitation of the
technology.
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1 Introduction

The ultimate goal (and thus rarely achieved) of compu-
tational chemistry is to produce chemically accurate
molecular properties of interest to experimentalists and
engineers at a low computational cost and in a relatively
expeditious time frame. The reality of the situation is
that a series of compromises, which optimize the cost
accuracy turnaround functional for the given problem at
hand, must be made. This series of compromises often
will focus the computational chemist on problems that
can be solved on the available computational resources,
in terms of both hardware and software. There is a
complex set of choices that includes basis sets, theoret-

ical methodologies, the appropriate implementation
of said methodologies, and computational resources.
Therefore, even marginal increases in computing
``power'' can expand the scope of science being
addressed in a particular research group [1, 2].

It is the synergistic role of the advances in computa-
tional hardware and infrastructure software and the
advances in chemistry algorithms and implementations
that was a driving force behind many of Professor Jan
AlmloÈ f's research interests. It is clear that using yester-
day's (even 10-year-old) software on the currently
available parallel or vector supercomputers would yield
far less science than those chemistry applications that
have either adapted to or been written for the changes in
computer technology. The pioneering work on direct
algorithms done in the AlmloÈ f group was crucial to
many of the computational chemistry community's ®rst
attempts to use massively parallel computing technology
�3±8�, especially since many of these ®rst parallel super-
computers did not have balanced input/output (I/O)
subsystems.

The computation of the two-electron four-center
integrals over gaussian basis functions is a signi®cant
component of the overall cost of many ab initio algo-
rithms. Improvements in the computational e�ciency of
the base integral evaluation algorithms have provided
signi®cant impact �9±16�: Other research e�orts have
focused on methods that provide approximations to
these integrals and their use in application software.
One method of approximation is to use the resolution
of the identity (RI) in the calculation of the traditional
four-center two-electron integrals. It is important to
note here that this is one of many algorithms that
approximate molecular integrals. All semi-empirical
methods by de®nition use approximate integral tech-
nology (c.f., Refs. �17±21� and references therein). In
addition, following the initial work of Friesner and
coworkers [22, 23], recent developments of Martinez
and Carter [24] review the use of pseudospectral
methods that show great promise and possibly wider
applicability than the RI technology presented here.
There are and have been attempts to circumvent the
gaussian functions completely using fully numerical
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schemes �25±31� and recently developed wavelet tech-
niques �32±34�: The former requires a complete engi-
neering of the theoretical methods/algorithms from the
ground up and the computational costs are still high.
The latter is still very new and exciting but will require
the same software engineering of needed theoretical
models. Again, the use of a particular method is a
conscious choice of the tradeo�s between accuracy, the
cost of the computation, and the cost of the imple-
mentation of the methodology.

Modern use of the RI method in ab initio electronic
structure theory began with the work of Feyereisen et al.
[35], who proposed this approximation for second order
MoÈ ller-Plesset perturbation theory (MP2) calculations
as a means of circumventing the sort and transformation
step. AlmloÈ f and coworkers [36] then provided an
elegant extension to SCF calculations and a formal
presentation of multiple RI algorithms. The goal of this
paper is to give an overview of the RI technology as used
in ab initio electronic structure theory. Derivative works
based on these e�orts are reviewed as well as the areas
that need additional development.

2 Background of RI methods

The modern use of the RI methodology as applied to ab
initio methods is not new. The basic approach to all
these methods is the factorization of the four-center
integral into two parts:

�ijjkl� �
XN

c

LijcRckl: �1�

The details vary in each application but the ultimate goal
is qualitatively the same, e.g., the reduction in com-
putational cost. As discussed below (c.f., Sect. 3) and
elsewhere [24], this factorization is bene®cial for any
Coulomb interaction summation. The cost is now O�n3�,
as opposed to the O�n4� for traditional integral evalu-
ation. Unfortunately, this factorization does not for-
mally reduce the scaling of an exchange interaction
summation. The time to compute the quantities used in
the Coulomb or exchange interaction summations will
vary but the cost of the summation remains O�n4� for
the exchange term.

The basic idea of approximating four-center integrals
by two- and three-center quantities calculated from
auxiliary functions was ®rst introduced by Boys and
Shavitt [37]. Van Alsenoy [38] gives a review of these
methods up to about a decade ago. This or a similar
technique is also used in the scattering theory to simplify
the computation of the requisite integrals to compute the
bound-state-free-electron Coulomb matrix elements [39].
Other methods that reduce the overall work for two-
electron integrals include the work of Beebe and
Linderberg [40], who used a full Cholesky decomposi-
tion of the two-electron integral super-matrix. The
details of the Cholesky decomposition show that the
inner projection used by Beebe and Linderberg is similar
to that of the work by Vahtras et al. [36]. O'Neal and
Simons [41] extended this to include integral derivative

methods. They showed the accuracy, cuto�-based sav-
ings for the computational costs and requisite disk space
minimization for both integral and gradient based al-
gorithms. This allows the application user to tune the
application based on the desired accuracy and cost.

Outside those e�orts reviewed by Van Alsenoy [38],
the ®rst use of an RI method was most likely that of
Baerends et al. [42], who used an RI algorithm to ®t the
density matrix. The second implementation and the most
widely known instance was the utilization of the Dunlap
®t in the development of density functional theory
(DFT). Dunlap and coworkers [43] ®t the Coulomb
potential using essentially an identical algorithm as im-
plemented, later, by Vahtras et al. (the detailed AlmloÈ f
work outlined in Sect. 3). The wide applicability and use
of the DFT methodologies alone easily demonstrate the
usefulness of the RI technology.

3 The RI two-electron integral approximation

In the RI approximation the reduction (c.f. Eq. 1) is
formally introduced by inserting a resolution of the
identity into the two-electron integrals:

�ijjkl� �
X

t

�ijt��tjkl�: �2�

Unless the auxiliary basis jt� spans the whole space of
products jij�; this expansion introduces an error that
has to be minimized. Vahtras et al. [36] showed that by
inserting the resolution of the identity more than once
and minimizing di�erent properties of the residual
function

Rij�r� � jij� ÿ
X

t

ctjt�; �3�

three di�erent three-center approximations for the four-
center two-electron integrals result:

�ijjkl� �
X
tuvw

�ijt� Sÿ1tu VuvSÿ1vw �klw� �4�

�ijjkl� �
X

tu

�ijt� Sÿ1tu �klju� �5�

�ijjkl� �
X

tu

�ijjt�V ÿ1tu �klju�: �6�

Depending on the term between the three-center inte-
grals, they are named SVS-, S-, and V-approximation,
which correspond to Eqs. (4), (5), and (6), respectively.
The two-center quantities are the overlap �Stu � �tu��
and electron repulsion �Vtu � �tju�� integrals using the
auxiliary functions or the RI ®tting basis. Preliminary
comparisons in Ref. [36] show that self-consistent ®eld
(SCF) energies and energy di�erences obtained with the
V-approximation are on average more accurate by two
orders of magnitude than the others. FruÈ chtl et al. [44]
showed results where this approximation and a moder-
ate-sized expansion basis (4±6 times the size of the
atomic orbital basis) yields good results.

This is not surprising, as the V-approximation is used
extensively in DFT theory to approximate the Coulomb
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contribution. Dunlap et al. [43] showed that for this
purpose it is variational and an optimized expansion
basis would give the best possible three-center approxi-
mation. This in principle also holds for the exchange
contribution, but as the sign of Coulomb and exchange
part are di�erent, the sum is not variational. In addition,
the optimal basis for the two contributions is di�erent,
and using the same basis takes away the ``best approx-
imation'' argument. Nevertheless it gives further indi-
cation that the V-approximation is the more natural one
to use.

4 Impact on algorithms

Besides the ``traditional'' use in DFT, the RI approxi-
mation has been implemented for SCF [36, 44], multi-
con®guration self-consistent ®eld (MCSCF) [45, 46],
MP2 [35], [47], and coupled cluster singles and double
(CCSD) with and without perturbative triples [48].

The usefulness of the RI-SCF method, as ®rst im-
plemented by Vahtras et al. [36] and recently developed
for parallel computers by FruÈ chtl et al. [44], is restricted
to a limited range of chemical systems. As noted by
Martinez and Carter [24], an exchange-type sum does
not reduce the O�n4� scaling of the calculation, but this
does not necessarily mean that a reduction of work
cannot be accomplished. In a disk-based implementation
[44], the storage as well as the I/O requirement scale only
with the third power of the number of basis functions,
O�n3�. Also, in a fully direct implementation the integral
calculation, normally the most time-consuming step,
would not only take advantage of the cheaper three-
center integrals, but also only scale with O�n3�. The
O�n4� part consists only of matrix multiplications, which
are in most cases computationally much less expensive
than integral calculations. In addition, linear algebra
operations are a very general problem, so one can expect
that e�cient implementations are available for most
computer architectures.

In the implementation by FruÈ chtl et al., the matrix
V ÿ1 in Eq. (6) is not stored, but contracted into the
three-center integrals. Following Rendell and Lee [48],
the integrals are transformed with V ÿ1=2

�ijjkl� �
X
stu

�ijjs� V ÿ1=2st V ÿ1=2tu �ujkl� �7�

�
X

m

�ijjm� �mjkl�; �8�

and the transformed integrals �ijjm� are used in the
requisite summations.

This simpli®es the calculation of the Coulomb and
exchange contributions to the Fock matrix, but cannot
be used for a straightforward implementation of a direct
scheme for the calculation. We therefore store the
transformed three-center integrals for repeated use. The
implementation within NWChem [49, 50] chooses be-
tween a distributed in-core method, where the integrals
are stored in a global array [51] (possibly distributed
over the distributed memory of a parallel computer), and

a disk-based version using the Disk Resident Array
library [52] if the memory is not su�cient.

The exchange contribution

Kij �
X
mkl

�ikjm��mjjl�Dkl; �9�

which is the least scalable part of the computation of the
Fock matrix, can be calculated via two matrix multipli-
cations and a sum over the results:

T m
jk �

X
l

�mjjl�Dkl �10�

W m
ij �

X
l

�ikjm�T m
jk �11�

Kij �
X

m

W m
ij : �12�

In the case of restricted closed shell SCF calculations
and if the molecular orbital (MO) vectors are available,
the number of operations can be further reduced by
inserting the de®nition of the density matrix and using
the MO vectors instead. In the second order SCF
procedure as implemented in NWChem [49, 53, 54]
the MO vectors are available during the energy and
gradient calculations, but not during the line search
algorithm, which in typical calculations is about 50% of
the instances when a Fock matrix build is needed. In a
DIIS-based Restricted Hartree Fock (RHF) or SCF
procedure these savings in computation time could be
used for every Fock build.

With Cij being the MO vectors, the expression for the
exchange contribution is then

Kij �
X
mkl

X
r

�ikjm��mjjl�CkrClr; �13�

and instead of Eqs. (10) and (11) we can use

X m
ir �

X
l

�iljm�Clr �14�

W m
ij �

X
r

X m
irX m

jr: �15�

The sum over r involves only the occupied orbitals,
resulting in a reduction in ¯oating point operations by a
factor of nocc=n:

The benchmark calculation by FruÈ chtl et al., [44] on a
Cray T3D show a speedup of 13 or 20 over the NWChem
direct SCF (depending on required accuracy and the size
of the RI expansion basis) [49] for benzonitrile with
Dunning's cc-pVTZ basis set [55] and an even-tempered,
uncontracted RI expansion basis. Sparsity can currently
only be used for calculating, storing, and retrieving the
three-center integrals. The matrix multiplications are
carried out over full matrices, so that integral sparsity
does not reduce the overall scaling of N � n3 for the den-
sity-based method1 and N � n2 � nocc using the MO vec-
tors. The strength of this method is thus restricted to

1 N corresponds to the number of functions in the RI ®tting basis
and n is the size of the atomic basis. Since the size of the ®tting basis
is a multiple of the atomic basis, O�N � n3� is also O�n4�: See the
discussion below about expansion basis sets, Sect. 5
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spatially compact molecules, where other methods also
cannot make much use of integral sparsity.

The use of RI integrals for second order MP2 was
®rst implemented by Feyereisen et al. [35] and later de-
veloped for parallel computers by Bernholdt and Har-
rison [47]. While the ®rst implementation used the SVS
approximation, Bernholdt implemented all three meth-
ods described above �Eqs. 4±6� and concluded that the
V-approximation gives the best results. His results show
that, especially if energy di�erences and not absolute
energies are of interest, an expansion basis of moderate
size gives nearly exact results in about 5% of the com-
putation time. The savings are, as in the case of SCF,
due to transforming the part of the computation with the
highest scaling to simple matrix algebra. Here the O�n5�
four-index transformation is replaced by a three-index
transformation scaling with O�n4�, while the exact en-
ergy evaluation now becomes O�n5�, but can be carried
out via matrix multiplications.

Ten-no and Iwata [45, 46] have used the RI approx-
imation for their implementation of a multi-con®gura-
tion SCF procedure. Their linear combination of
atomic-electron distributions MCSCF (LCAD-MCSCF)
yields energies of extremely high precision with signi®-
cantly shorter computation time (e.g., the energy of the
1A0 state of HNO with cc-pVTZ basis is correct to
5� 10ÿ5 kcal/mol and takes only 25% of the computa-
tion time). The computational e�ciency as well as
accuracy improve with larger basis sets.

Rendell and Lee [48] used the RI approximation for
the calculation of all integrals involving one or zero oc-
cupied orbitals [�abjcd� and �abjci� in their notation] for
their implementation of CCSD and CCSD(T). While
adding some computational cost at the O�n5� level, it
greatly reduces the amount of disk storage required, thus
pushing the limit on the size of chemical systems for which
such calculations can be carried out. In their benchmark
calculations of energy di�erences, the error introduced by
the RI approximation was always smaller than the error
resulting from incompleteness of the atomic orbital (AO)
basis, which they take as a su�cient criterion.

5 RI expansion basis sets

An area that will de®nitely need some more exploration
is the choice of expansion basis sets. The most natural
choice (and the easiest to implement, as most existing
integral packages can only handle one basis set at a time)
would be to use the atomic orbitals as an expansion basis
as well. While this gives reasonable results for coupled
cluster methods [48], it is much too inaccurate for most
other methods reviewed here.

The other extreme would be to take the full gaussian
product basis. The LCAD approach [46] starts from
there, but takes into account only products of functions
that are located on the same atom. It then removes
product functions that lead to linear dependencies.

Most other investigations used basis sets that are
somewhere between these two extremes in terms of size
and sophistication. Feyereisen et al. [35] used standard
AO basis sets of higher quality as expansion basis.

Bernholdt and Harrison [47] uncontracted their AO
basis and added some functions from the product basis
set.

Vahtras et al. [36] took the boundaries for exponent
and angular momentum from the product basis and
constructed an uncontracted and even-tempered basis
set that ful®lled these conditions. FruÈ chtl et al. [44] used
a more heuristic scheme based on similar considerations.

The expansion or ®tting basis sets [56] developed for
the DGauss and DeMon density functional programs
that are widely used for DFT calculations are based on
the same theme. A mostly (all except the highest expo-
nent) even-tempered set, starting with double the lowest
exponent of the atomic orbital basis set, is constructed
with as many exponents as possible shared between the
di�erent angular momenta to simplify integral calcula-
tion. Although the small number of functions, and
especially the lack of functions with high angular
momentum (even for second-row atoms and transition
metals they only go up to d functions), seems rather
limiting, the large number of successful applications
seems to indicate that chemically reasonable results can
be obtained with them.

One signi®cant systematic optimization of a basis set
for use as an RI expansion basis is the work of Eichkorn
et al. [57] on an expansion basis for use in DFT calcu-
lations. They require the exponents of their expansion
basis to ful®ll a dependency similar to the de®nition of
an even-tempered basis

gi�1 � gib 1� c
i2

�n� 1�2
 !

�16�

and optimize g0; b; and c to maximize the Coulomb
energy, using its variational property. The number of
functions and highest angular momentum are chosen to
ful®ll an accuracy criterion for the charge density with a
minimal number of expansion functions.

A more thorough investigation of this problem is
clearly necessary. It may turn out that basis sets have to
have di�erent properties for di�erent methods, depend-
ing on if Coulomb or exchange interaction contributions
are more important, or if the core or the valence
electrons have to be described more accurately.

6 Future work and conclusions

It is clear that the RI approximation as used in
computational chemistry algorithms, especially in DFT,
has been and will be widely used in the future. The
expansion of the high performance computing market
into parallel supercomputers of O(100) nodes has led to
continued development of algorithms that take advan-
tage of these unique hardware and software capabilities.
The RI algorithm is a natural method for expanding the
scope of applications via speci®c algorithms that involve
Coulomb interaction summations; fortunately, there are
many such summations in computational chemistry (e.g.,
also in analytic gradient algorithms). It is also clear from
Sect. 5 above that further exploration and optimization
of expansion basis sets is warranted by the community.
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This is not only for expansion basis sets for speci®c atoms
with a given atomic basis set but methods need to be
developed that will provide an appropriate recipe to
generate a basis set for a given methodology as well. A
DFT expansion or ®tting basis set is likely to be di�erent
in nature that one for CCSD.

RI technology, although the focus of this short review
is not necessarily the de®nitive algorithm of choice; it is
one of many useful tools. One lesson learned from the
migration to parallel supercomputers is that multiple
algorithms must be implemented to a�ord scalability
with both machine size and chemical system size. Like
many software applications and algorithms, the user
must be aware of the inherent nature and applicability of
the RI algorithms being used.
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